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Abstract. A main goal of Formal Concept Analysis from its very begin-
ning has been the support of rational communication. The source of this
goal lies in our understanding of mathematics as a science which should
encompass both its philosophical basis and its social consequences. This
can be achieved by a process named ’restructuring’. This approach shall
be extended to logic, which is based on the doctrines of concepts, judg-
ments and conclusions. The program of restructuring logic is named Con-
textual Logic (CL). A main idea of CL is to combine Formal Concept
Analysis and Concept Graphs (which are mathematical structures based
on conceptual graphs). Concept graphs formulate judgments on the con-
tained concepts, and conclusions can be drawn by inferring one concept
graph from another. So we see that concept graphs can be understood
as a crucial part of the mathematical implementation of CL, based on
Formal Concept Analysis as the mathematization of the doctrine of con-
cepts.

1 Overview

Formal Concept Analysis (FCA) is a mathematical theory applied successfully
in various projects (there have been more than 200 projects in various academic
and commercial fields). The impact and success of FCA and the large number of
applications in the real world cannot be explained solely with the mathematical
results and the mathematical power of FCA. The driving force behind FCA
lies in our understanding of mathematics as a science which encompasses the
philosophical basis and the social consequences of this discipline as well.

A main goal of Formal Concept Analysis from its very beginning has been
the support of rational communication and the representation and processing
of knowledge. This goal is based on and carried out by a process termed ’re-
structuring’. In the first section, we will describe the ideas and purposes of this
restructuring process as well as further philosophical foundations of FCA. More-
over, we will argue why FCA fulfils the purposes of restructuring to a large
extent.

In the next section, the restructuring approach is extended to logic. We will
show that the purely extensional and mechanistic attempt of contemporary for-
mal mathematical logic is too narrow for our purposes. For this reason, we re-
vitalize the traditional philosophical understanding of logic. This understanding



tries to capture and investigate the laws of thinking and is based on the doctrines
of concepts, judgments and conclusions.

The program of restructuring mathematical logic will be called Contextual
Logic (CL). As this logic starts with the doctrine of concepts, we see that CL
builds upon FCA. However, further formalizations of the doctrines of judgments
and conclusions are needed.

A promising approach is to use the system of conceptual graphs (CGs) by
John Sowa, which will be introduced in Section 4. The philosophical background
of this system is similar to that of FCA, and the system allows us to formulate
judgments and conclusions in a way which is much nearer to human reasoning
than predicate logic. But the system of conceptual graphs is not elaborated
mathematically. One reason for this is that this system is very open-minded and
extended in various ways which are often not clearly defined. Thus, it is huge,
without sharp borders, and contains several ambiguities, gaps and even flaws
and mistakes.

For this reason, in Section 5 a mathematical formalization for a core of CGs
is provided. The mathematical structures modelling CGs will be called concept
graphs. As said above, it is impossible to find a definition for concept graphs
which covers all aspects and features of CGs at once. Instead of that, different
versions of concept graphs which correspond to different fragments of CGs are
elaborated. An overview over the different kinds of concept graphs is presented
in Section 6.

2 Formal Concept Analysis

From the main theorem of Formal Concept Analysis we know that the concept
lattices of FCA are -up to isomorphism- exactly the complete lattices of lattice
theory. Thus, from a purely mathematical point of view, FCA can be seen as the
theory of complete lattices, presented in an unfamiliar way. The broad results of
lattice theory have been applied in various fields of mathematics, but only little
outside mathematics. In contrast to that, FCA has been successfully applied in
various projects. Thus, in order to explain the power and success of FCA, it
is obviously not sufficient to look at FCA as a solely mathematical structure
theory. The question is: What is the unique peculiarity that makes FCA that
usable? What is the advantage of FCA compared to the usual form of lattice
theory? The answer lies in the underlying philosophy of FCA. The main idea
is a program termed ‘restructuring (lattice theory)’, relying on the concept of
Wissenschaftsdidaktik by Hartmut von Hentig. In his book ‘Magier oder Magis-
ter? Über die Einheit der Wissenschaft im Verständigungsprozess.’ (‘Magician or
Magister? On the Unity of Science in the Process of Understanding’, cf. [He74]),
the restructuring of scientific disciplines is explained as follows:

Sciences have to examine their disciplinary, and this means: To uncover
the unconscious purposes, to declare their conscious purposes, to select
and to adjust their means according to those purposes, to explain pos-
sible consequences comprehensible and publicly, and to make accessible



their ways of scientific finding and their results by the every-day lan-
guage. (p. 136f)

Hentig, 1974

The program of restructuring is based on a philosophical background which
goes back to the Pragmatism of Charles Sanders Peirce (see [Pe35]) and which is
adopted and continued in the Discourse Philosophy of Karl-Otto Apel (cf. [Ap89])
and Jürgen Habermas (see [Ha81]). The main idea of Pragmatism is that the
significance of any conception consists exclusively in its effects. In particular,
each scientific concept and theory has to be judged by all the effects it may
produce. This establishes a tight connection between theory and practice.

Another crucial point is that in Pragmatism and discourse philosophy, the
basis and origin of reasoning lies within intersubjective communication and ar-
gumentation. It is important to note that intersubjective communication takes
place not only between members of a specific scientific community, but between
members of different communities and even between scientists and non-scientists.
Thus, a transdisciplinary communication has to be enabled and established. For
this reason, Hentig demands the use of every-day language, so that a scientific
theory, including its results and effects, can be understood, applied and critizised
by people standing outside that specific scientific community. In another place
in [He74] he says:

The restructuring of scientific disciplines within themselves becomes
more and more necessary to make them more learnable, mutually avail-
able, and criticizable in more general surroundings, also beyond disci-
plinary competence. This restructuring may and must be performed by
general patterns of perception, thought, and action of our civilization.
(p. 33f)

Hentig, 1974 (italics by Dau/Klinger)

The development of FCA is grounded on Hentings restructuring program. Lattice
theory is reworked in order to integrate and to rationalize origins, connections
to and interpretations in the real world. The results of lattice theory have to be
presented in a way which makes them understandable, learnable, available and
criticizable, particularly for non-mathematicians. As Wille says in [Wi96]:

The aim is to reach a structured theory which unfolds the formal thoughts
according to meaningful interpretations allowing a broad communication
and critical discussion of the content.

Wille, 1996

We have to discuss why and how FCA achieves the requirements of the restruc-
turing program. The starting point of FCA is the philosophical understanding of
a concept as the basic unit of thought. A concept is constituted by two counter-
parts: Its extension which consists of all objects belonging to the concept, and its
intension which contains all attributes shared by all objects of the extension. Due
to Peirce, in any reasoning or argumentation process, we can only grasp a limited
part of the reality. Our universe of discourse is always a restricted context. These



considerations lead to the well-known basic definitions of FCA which formalize
these ideas. We start with a formal context (G,M, I), consisting of a set G of
(formal) objects (in German: ‘Gegenstände’), a set M of (formal) attributes (in
German: ‘Merkmale’), and an incidence-relation I ⊆ G ×M . The relationship
gIm (with g ∈ G and m ∈ M) indicates that the object g has the attribute
m. A formal concept is a pair (A,B) with A ⊆ G and B ⊆ M , which satisfies
B = {m ∈M | gIm for all g ∈ A} and A = {g ∈ G | gIm for all m ∈ B}. This is
clearly a mathematical formalization of the philosophical concepts.

From a mathematical point of view, formal contexts and formal concepts
could be reduced to classical relational structures (which are purely extensional)
resp. to unary predicates. But humans structure the world conceptually and
meaningfully, and the meaning of concepts cannot be explained solely by their
extensions. On the contrary: The meaning of concepts is heavily constituted
by their intensions and by the intermediate relationships between the concepts
(cf. [Se01] and [Br94]). Moreover, a formal context can be represented by crossta-
bles which are very common in our culture and therefore easy to comprehend.
Thus, from a human point of view, formal contexts are easier to understand and
much more meaningful than relational structures.

The most important relation between concepts is given by the relation-
ships subconcept and superconcept. For formal concepts, they are defined as
follows: Given two formal concepts (A1, B1) and (A2, B2), we set (A1, B1) ≤
(A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B2 ⊆ B1) and say that (A1, B1) is a subconcept
of (A2, B2) resp. (A2, B2) is a superconcept of (A1, B1). The set of all formal
concepts of a given formal context, together with the relation ≤, is a complete
lattice, the concept lattice of the formal context.

The concept lattice of a formal context can be represented as a labelled line
diagram. This visualization of the underlying formal context is the next advan-
tage of FCA. With a small amount of experience, these diagrams are easy to
understand and comprehend. Our experience with projects shows that when a
specific domain is formalized by a formal context, the contemplation of the line
diagram of the corresponding concept lattice often leads to unexpected insights
by the domain experts.

Still more effects come into play when so-called many-valued contexts are
considered. Many-valued contexts are transformed into ordinary (one-valued)
formal contexts by the process of conceptual scaling. During this process, each
attribute m ∈ M , together with its values, is interpreted by a context itself.
There is no standard or even neccessary interpretation of an attribute: It has to
be decided by the field expert which scale is appropriate for a given attribute.
The fact that the process of scaling cannot be automated should be understood
not as a drawback, but a great advantage: In our projects it turned out, when
a Toscana-System1 was implemented by Toscana-consultants (which are ex-
perts on FCA, but which usually have no or only few experience in the specific
domain),that the right choice of a scale is usually far from being trivial and often

1
Toscana is a computer program which allows to explore relational databases with
FCA-methods, see for instance [BH03].



raises discussions among the field experts as well as between the field experts and
the Toscana-consultants. Thus, already the process of scaling supports rational
communication, even between members of different research fields. Moreover, as
the choice of the scales is left to the experts and not done automatically by
the machine, the cognitive autonomy and the responsibility of the experts is
preserved.

Finally, many-valued contexts can be understood as mathematical implemen-
tations of tables in relational databases. As most information is stored as data in
relational databases, FCA turns out to be a perfect instrument for a meaningful
and conceptual exploration of the stored data.

3 Logic

The aim of restructuring logic seems to be self-evident, as logic, understood
as the investigation of the laws of thinking, is another fundamental source for
reasoning. Due to the pragmatic paradigm, the first step in the restructuring
process has to make clear the purposes and effects of logic.

In the previous section, it was already argued that the purely extensional ap-
proach to predicate logic and their models (relational structures) is to narrow to
be used in rational and meaningful discourses. As another point, the mechanis-
tic attempt of predicate logic shall be mentioned, particulary the calculi which
act on formulas, understood as a priori meaningless sequences of signs. The rea-
son for this is clear: The purpose of predicate logic has never been to model
or support human reasoning, but to provide an instrument which shall explain
and contribute to the structure of mathematical argumentations only. Thus, for
supporting reasoning, we have to find a broader understanding of logic which
goes beyond classical predicate logic. As Apel says in [Ap89]:

In view of this problematic situation [of rational argumentation] it is
more obvious not to give up reasoning at all, but to break with the con-
cept of reasoning which is orientated by the pattern of logic-mathematical
proofs.

Apel, 1989 (italics by Dau/Klinger)

A convincing approach is to revitalize the traditional, philosophical understand-
ing of logic, given by ’the three essential main functions of thinking – concepts,
judgments and conclusions’ [Ka88]. Concepts, the basic units of thought, are
already formalized in FCA. If we combine concepts to meaningful statements,
we obtain propositions; and judgments are propositions which are asserted, i. e.
valid propositions (due to Peirces pragmatism and the discourse philosphy, the
validity of judgments has to be confirmed by a rational discourse in the inter-
subjective community of communication). With conclusions, new judgments are
obtained from already existing ones.

The process of restructuring this understanding of logic, i. e. the mathemat-
ical formalization of philosophical logic shall lead to a theory called Contextual
Logic (CL). In CL, we have to formalize concepts, judgments, and conclusions.



As the mathematization of concepts has already been elaborated, the question
of how to proceed with judgments and conclusions arises.

4 Conceptual Graphs

For the formalization of judgments, we use the theory of Conceptual Graphs
(CG) by John Sowa. In Figure 1, we provide two well-known examples of CGs.

on *MAT:CAT: Yoyo

: *

SITUATION:

marry SAILOR: *

PERSON: Tom believe

PROPOSITION:

PERSON: Mary want

Fig. 1. Two conceptual graphs

Conceptual graphs are assembled of concept boxes, each of them containing
a type and a reference belonging to the type. The star in the right concept
box of the left graph is the so-called generic marker and has to be understood
as an unqualified object; i. e. the generic marker can be read as an existential
quantifier. Concept boxes may be nested (see the right graph for an example).
In this case, a box stands for a context, and the reference of the box is a graph
itself which describes this context. Concept boxes may be connected by relation
ovals or by a dotted line (so-called coreference-links). These connections describe
relationships between the references of the boxes. In particular, a coreference-link
between two concept boxes means that their references are identical.

The meaning of the left graph is therefore ‘The cat Yoyo is on a mat’. The
right graph contains two contexts, namely the concept boxes of type PROPOSI-
TION and SITUATION (which are common types of contexts). The graph can
be read as follows: The person Tom believes a proposition, which is described
by a graph itself. The proposition says that the person Mary wants a situation,
which again is described by a graph. In this situation we have a concept box
> : ∗ connected with a coreference link to the concept box PERSON:Mary

in the context above. So the situation is that Mary marries a sailor. The under-
standing of the whole graph is now: The person Tom believes the proposition
that the person Mary wants the situation that Mary marries a sailor. In short:
Tom believes that Mary wants to marry a sailor.

In [So92], Sowa explains the foundations and the purpose of conceptual
graphs as follows:



Conceptual graphs are a system of logic based on the existential graphs
of Charles Sanders Peirce and the semantic networks of artificial intelli-
gence. The purpose of the system is to express meaning in a form that
is logically precise, humanly readable, and computationally tractable.
With their direct mapping to language, conceptual graphs can serve as
an intermediate language for translating computer-oriented formalisms
to and from natural languages. With their graphic representation, they
can serve as a readable, but formal design and specification language.

Sowa, 1992

As this quotation shows, the philosophy behind conceptual graphs is based on
Peirce’ pragmatism, and it is very close to Hentigs restructuring program.

In philosophy, the considered judgments are often elementary, i. e. judgments
of the form ‘an object belongs to the extension of a concept’ or ‘one concept is a
subconcept of another concept’. The first kind of judgments corresponds to the
boxes in conceptual graphs, the second kind is coded in the so-called type hierar-
chy of conceptual graphs. But as we can see in Figure 1, with conceptual graphs,
much more complex judgments can be formulated. This higher expressiveness is
clearly a further advantage.

Sowa provides rules for formal deduction procedures on conceptual graphs.
Thus the system of conceptual graphs offers a formalization of conclusions as
well.

In some sense the system of conceptual graphs is not fixed, but open-minded.
It is designed to be used in fields like software specification and modelling, know-
ledge representation, natural language generation and information extraction,
and these fields have to cope with problems of implementational, mathematical,
linguistic or even philosophical nature. In order to deal with such problems, dif-
ferent modifications and extensions of conceptual graphs are suggested. For this
reason it is impossible (and perhaps not even desirable) to provide a definition
which covers all possible aspects and features of conceptual graphs at once. On
the other hand a closer observation shows that this leads to a lack of precise-
ness which causes several difficulties and fallacies, ranging from ambiguities over
minor gaps to major flaws.

As Sowas system is not mathematically elaborated, we have to provide math-
ematical definitions for conceptual graphs, and we have to formalize how reason-
ing can be carried out with them. An evident approach is to interpret the types
of conceptual graphs by formal concepts. But as argued above, it cannot be ex-
pected to find a mathematical definition which covers all aspects of conceptual
graphs at once. Instead of this, different forms of concept graphs (as a mathema-
tization of CGs) with different levels of expressiveness (and further differences)
have been developed during the last years. An overview of the different forms of
concept graphs will be provided in the next sections.



5 Concept Graphs and Contextual Logic

As explained in the previous sections, Contextual Logic can be understood as a
formalization of the traditional philosophical logic with its doctrines concepts,
judgments and conclusions. In this section we explain briefly how the theory
of CGs combined with FCA led to the theory of concept graphs in its several
distinct formings.

Concept graphs are based on CGs. However, as elaborated in the previous
section, CGs were designed to be of use in a wide variety of different fields,
resulting in difficulties in the mathematization. Hence, concept graphs as math-
ematization of CGs only cover restricted parts of Sowa’s Theory. In general, two
accesses can be distinguished, namely semantical approaches and those based on
a separation in syntax and semantics.

Semantical theories deal with the elaboration of a mathematical structure
theory of concept graphs of a given power context family in an algebraic manner
(where a power context family (PCF) is a family of contexts which are con-
nected via their object sets; the mathematical definition can be found below).
In particular, the forms and relations of those concept graphs are investigated.
This includes operations on those graphs (see for instance [Wi01]) and a thor-
ough study of the properties of the corresponding algebra of concept graphs of a
given power context family. Since semantical approaches to the theory of concept
graphs are concerned with all ‘valid propositions’ of a power context family, they
are understood as a formalization of the doctrine of judgments.

The other approaches are logical ones, using a separation of syntax and se-
mantics as it is common in mathematical logic: Concept graphs as syntacti-
cal constructs are defined over an alphabet consisting of object-, concept- and
relation-names. They are then equipped with an explicit contextual semantics
based on power context families (instead of the traditional implicit semantics
of CGs via a translation into predicate logic). In many of the approaches, the
results of the corresponding semantical access are used. Since the different speci-
ficities of logic systems of concept graphs include an adequate calculus (i. e. a set
of inference rules which are sound and complete) or (for the theories of Prediger
and Klinger) an effective method to do reasoning via standard models/PCFs,
these theories are considered to be a formalization of the doctrine of conclusions.

We will now briefly explain the basic notions of those two approaches, starting
with concept graphs as semantical structures.

The first approach to Contextual Judgment Logic was proposed by Wille in
[Wi97] where he connected FCA with the theory of CGs. Wille defined concept
graphs of power context families as semantical structures.

Since this first access was further developed and specified, we will use a
slightly more recent version of concept graphs. The following definitions are taken
from [Wi00b]: A power context family −→K := (K0,K1,K2, . . . ,Kn) is a family of
contexts Kk := (Gk,Mk, Ik) with G0 6= ∅ and Gk ⊆ (G0)k for each k = 1, . . . , n.
The formal concepts of Kk with k = 1, . . . , n are called relation concepts because
they represent k−ary relations on the object set G0 by their extent. A concept
graph is defined as a structure G := (V,E, ν, κ, ρ) consisting of two sets V and E



and three functions ν, κ, and ρ such that the following conditions are satisfied:
Firstly, (V,E, ν) has to be a relational graph consisting of two disjoint sets V
and E whose elements are called vertices and edges, respectively, and a function
ν : E →

⋃
k=1,... ,n V

k which maps each edge to the ordered tuple of its adjacent
vertices. Secondly, κ : V ∪ E →

⋃
k=0,... ,n B(Kk) is a mapping such that κ(u) ∈

B(Kk) for all u ∈ V ∪E with |u| = k. Finally, ρ : V ∪E →
⋃
k=0,... ,n P(Gk)\{∅}

is a mapping such that ρ(u) ⊆ Ext(κ(u)) for all u ∈ V ∪ E and, furthermore,
ρ(u) = ρ(v1)× · · · × ρ(vk) if |u| = k > 0 and ν(u) = (v1, . . . , vk).

An order on the set of all concept graphs of a power context family is then
introduced via the so-called conceptual content, which is studied extensively
in [Wi03]. It is even shown that the conceptual contents of concept graphs of
a power context family can be described as extents of concepts of a suitably
constructed power context family again.

As an example, we consider the different theories of concept graphs with
papers they were published in, the kind of approach which was taken and the
relation ‘is an extension of’ between these theories. The first graph of Figure 4, for
instance, is a semantical concept graph of the PCF shown in Figure 2. It is read as
follows: Triadic Concept Graphs in [Wi98] have a semantic approach, Concept
Graphs in [Wi97] as well and the theory presented in [Wi98] extends [Wi97].
Note that only one possible diagrammatic representation for the corresponding
mathematical entity is shown in Figure 4.1.

K0:

K2:

Fig. 2. The power context family (K0,K2)

As an approach based on the seperation of syntax and semantics, we describe
how concept graphs were introduced in [Pr98b], where the approach of [Wi97]
was adopted and modified in order to obtain a logical theory:

The first step towards a syntactical implementation of concept graphs is the
definition of an alphabet A := (G, C,R) consisting of a set G of object names,



G := {[Wi97], [Wi98], [Pr00], [DH03]}
C := {⊥,SEMANTIC APPROACH, LOGIC APPROACH,>}
R := {EXTENSION}
≤C :=

LOGIC
APPROACH

c
cc c��

@@ ��

@@
>

⊥

SEMANTIC
APPROACH

≤R := idR

Fig. 3. Example for an Alphabet

an ordered set C of concept names and a family R of ordered sets of relation
names. An example for such an alphabet is given in Figure 3. To distinguish the
syntactical names from the elements of the power context family used for the
interpretation, we employ different capitalizations. such an alphabet is given.
Syntactical concept graphs over an alphabet are then introduced as mathemati-
cal structures of the form G := (V,E, ν, κ, ρ), consisting of a relational graph, a
function κ assigning concept names to vertices and relation names to edges, and
a function ρ which assigns non-empty sets of object names to the vertices (as
references). A syntactical concept graph over the alphabet in Figure 3 is shown
in Figure 4.2. syntactical concept graph over the alphabet depicted 3.

For the semantics, the names of the alphabet are interpreted in a given power
context family −→K := (K0,K1, . . . ,Kn) via a so-called interpretation λ: This
interpretation specifies how the syntactical elements of the alphabet are related
to elements of −→K such that object names are mapped to objects of K0, concept
names to concepts of K0 and relation names to elements of B(Kk). Moreover, the
orders specified in the alphabet are preserved. The resulting structures (−→K , λ)
are called context-interpretations. Now we say that a concept graph is valid in
a context-interpretation (−→K , λ) (and call (−→K , λ) a model for the graph) if the
so-called vertex- and edge condition for the vertices respectively edges are both
satisfied. The vertex condition for a vertex v is fulfilled if the interpreted object
names of v belong to the extent of the interpreted concept name of that vertex.
Similarly, the edge condition for an edge e holds if the objects along e are in the
relation concept assigned to that edge. It is easy to see that this graph is (using
a suitable interpretation) indeed a concept graph of the PCF in Figure 2.

Why does the theory of concept graphs meet the claims for Contextual Logic?
The aim of Contextual Logic is not to enter into competition with First Or-

der Predicate Logic (FOPL), in particular since the expressiveness of most of
the theories corresponds only to restricted parts of FOPL. The goal was rather
to find an approach which may support rational communication and argumenta-
tion. In contrast to FOPL, CGs have been developed and used as a language for
knowledge representation with its focus on connections of concepts. They aim at
capturing the rhetoric structure of common language and are graphically repre-



1. Semantic Concept Graph:

µ(Approach: Semantic) : Concept Graphs [Wi97]

µ(Approach: Semantic) : Triadic Concept Graphs [Wi98]

�� ��
1

Extension
2

v1

e1 v2

2. Syntactic Concept Graph:

�� ��
1

Extension
2

SEMANTIC APPROACH: [Wi98]

SEMANTIC APPROACH: [Wi97]

w1

f1 w2

3. Syntactic Semiconcept Graph:

�� ��
1

Extension
2

SEMANTIC APPROACH: [Wi98] | [DH03]

SEMANTIC APPROACH: [Wi97] | [Pr00]

u1

g1 u2

4. Syntactic Concept Graph with Cuts:

SEMANTIC APPROACH: [Wi98]

�� ��Extension

1

2
SEMANTIC APPROACH: [Wi97]

a1

a2h1

�� ��Extension>: [DH03]

a3 �
�
�
�

h2 a4

>: [Pr00]

c1

�
�

�
�

SEMANTIC APPROACH: [Pr00]

a6

c3

SEMANTIC APPROACH: [DH03]

a5�
�

�
�

c2

Fig. 4. Examples for Concept Graphs



sentable. The contextual foundation of concept graphs as the mathematization of
CGs enables us to make the restrictions which occur during the transition from
real to formal data explicit and hence discussable. The various extensions for the
basic theory of concept graphs as proposed by Wille in [Wi97] and developed by
Prediger in [Pr98a], [Pr98b], yield a broad expressiveness for Contextual Logic.
These extensions include negation on the level of propositions ([Da01], [Da02]),
negation on the level of concepts and relations ([Wi01],[Wi02a], [Kl01a],[Kl01b]),
existential ([Da01],[Wi02a], [Kl02]) and universal quantifiers ([Ta00]), and Nest-
ings ([Wi98], [Pr00], [SW03], [DH03]). Moreover, the Contextual Logic of Rela-
tions has been developed ([PoW00], [Wi00c], [Ar02]) as a Contextual Attribute
Logic ([GW99b]) on the relational contexts of a power context family and so-
called relation graphs have been introduced as algebraic structures for represent-
ing relations and operations on relations ([Po01],[Po02]). In the next section we
will discuss these extensions in more detail.

6 Different Forms of Concept Graphs

In this section, our aim is to give an overview over the characteristics and the
diverse states of development of the different theories of concept graphs. Please
note that the notion of ‘concept graphs’ is used as a generic term for all these
approaches.

In Figure 5–7, several concept lattices are shown, which all have the same
object set consisting of theories of concept graphs along with a reference for the
corresponding paper. In each lattice, the attributes are chosen with respect to a
certain focus (e. g. ‘logical properties’). We will explain the attributes and give
examples for the objects. Since the most fundamental differentiation for theories
of concept graphs is that in semantic approaches and those established by a
separation in syntax in semantics, this attribute occurs in each of the concept
lattices.

The concept lattice in Figure 5 is about models and the kind of concepts
which are considered (e. g. concepts, semiconcepts or protoconcepts for PCFs)
for each semantical and syntactical theory in question.

All approaches have a so-called contextual semantics, which is based on FCA
and describes concepts as the constituents of concept graphs in a formal and
comprehensive way. The components of such a contextual model are specific
kinds of formal contexts (depending on the particular system of concept graphs)
and concepts of these contexts. Several models are distinguished: those based on
power context families (PCFs) which are comprised by both triadic and nested
PCFs, and relational contexts. For PCFs, there are three notions of concepts: The
set of all protoconcepts of a context (see [Wi00a]) contains all semiconcepts which
in turn include all concepts. Obviously, triadic PCFs lead to triadic concepts,
and for nested PCFs and relational contexts, normal concepts are considered. In
order to include, for instance, a negation on the level of concepts and relations,
power context families with semiconcepts (or protoconcepts) can be employed
as model since they include a negation on concepts.



Notions of Concepts: Concepts

Models: PCFs

Notions of Concepts: Semiconcepts

Models: Triadic PCFs

Notions of Concepts: Triadic Concepts

Approach: Sep. Syntax/Semantics

Models: Relational Contexts

Models: Nested PCFs

Approach: Semantic

Notions of Concepts: Protoconcepts

Concept Graphs [Pr98b] Concept Graphs with Cuts [Da02]

Concept Graphs [Da03]

Concept Graphs [Ta00]
Concept Graphs with Cuts [Da01]

Semiconcept Graphs [Kl01b]

Semiconcept Graphs [Kl02]

Semiconcept Graphs [Kl01a]Concept Graphs [DH03]

Concept Graphs [Pr00]

Concept Graphs [Pr98a]

Concept Graphs [Wi02a]

Concept Graphs [Wi97]

Semiconcept Graphs [Wi01]

Protoconcept Graphs [Wi02a]

Triadic Concept Graphs [Wi98]

Concept Graphs [SW03]

Concept Graphs [PW99]

Fig. 5. Models and Units

The concept lattice shows, for instance, that relational contexts as models
were only utilized by Prediger in [Pr98a] and [Pr98b]. They were then substituted
by PCFs which yield a richer description of relations.

Figure 6 is concerned with extensions to the basic theory of concept graphs.
There are several extensions and features, including the number of references,
negation, nestings and quantification. We will now briefly summarize the mean-
ing of the different attributes.

First negation is considered, which can be introduced on different levels. If
the traditional philosophical understanding is taken into account, then (inter-
preted) concept graphs as judgments are regarded as valid propositions, hence
as meaningful combinations of concepts. In particular, this means that the defi-
nition should not allow the construction of a self-contradictory graph. In order
to still be in the position to employ a (though restricted) negation, in [Wi01] a
negation on the level of concepts and relations was introduced. For the theory of
concept graphs with cuts ([Da01]), the focus is different: Here the aim is to reach
a logical equivalence to FOPL, thus the introduction of a negation on the level
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Fig. 6. Extensions and Features

of propositions is necessary. Moreover, as we have self-contradictory formulas in
FOPL, it is allowed to construct self-contradictory graphs.

Two attributes are concerned with references, which are the objects (or, in
logic approaches, the object names) assigned to the vertices of the relational
graph. In some approaches there may be sets of objects assigned to each vertex,
while other approaches only allow single objects. These first approaches therefore
allow a more condensed representation of knowledge than the latter.

As for quantifiers, we find that there are two kinds of quantification for
concept graphs. With existential quantification, existentially quantified variables
are introduced as references, whereas universal quantification allows the assertion
of propositions about all objects satisfying certain conditions. There is only one
paper ([Ta00]) where universal quantifiers are introduced directly. In all other
cases the topic of the corresponding paper is a system of concept graphs with
existential quantification and global negation.

Finally we consider nestings (or subdivisions). Nestings form an extension to
the language of concept graphs, which allows the bundling of information and
the assertion of propositions which refer to different contexts (thus the coding
of ‘modal information’). There are theories which only consider disjoint nestings
and those in which parts of the subdivision may overlap.
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Fig. 7. Properties of Logical Theories

The concept lattice shows that all semantic theories have sets of objects as
references, and, conversely, that only in the papers of Dau and one paper of
Prediger the references are restricted to single objects. Moreover, by combining
Figure 5 and 6 we can observe that all theories including nestings/subdivisions
(which would comprise [Wi98] and [SW03] as semantic approaches and [Pr98a],
[Pr00] and [DH03] as logical ones) require PCFs with additional structures, such
as triadic or nested PCFs.

Finally, Figure 7 addresses properties of logical theories. Again, we first
outline the definitions of the attributes.

A logic system of concept graphs is called satisfiable if each syntactical
concept graph is valid in at least one model, thus if the construction of self-
contradictory concept graphs is not possible. Moreover, in accordance with [Ba77],
we say that a theory based on the separation of syntax and semantics is decid-
able, if there is an algorithm which determines for each pair G1,G2 of concept



graphs over the same alphabet whether G1 entails G2 (hence if G2 is valid in
every model for G1) or not.

Since the previous two attributes do not make sense for semantical ap-
proaches, we chose to state explicitly whether a logic approach satisfies them
or not.

As for the remaining attributes: A logic system is said to have an adequate
calculus, if there exists a sound and complete set of inference rules. Furthermore,
we say that it is possible to transform a model into a concept graph, if for a given
model (in particular, for a given PCF), a concept graph can be constructed
which codes the same information as the PCF. This so-called standard graph
then entails all other (valid) concept graphs of the corresponding model. Finally,
the attribute Transformation: Graph to Model denotes that for each syntactical
concept graph of the logic system in question it is possible to construct a model
(or simply a power context family) coding the same information. Via this so-
called standard model, entailment can be characterized.

In the concept lattice we can now see that the attribute ‘Transformation:
Graph to Model’ implies both decidability and satisfiability. Satisfiability follows
since in each of the corresponding papers the ‘standard model’ is indeed a model
for the concept graph. Furthermore, in every papers having this attribute the
entailment relation is characterized via the standard model or the standard PCF,
hence the attribute ‘Decidability: Yes’ is implied, too.

Figure 4 shows examples for the different systems of concept graphs. The
first two graphs were already explained in the previous section. The third graph
is a (syntactical) semiconcept graph over the alphabet in Figure 3 and includes
a negation on the concept and the relation level. It represents that the semantic
approach in [Wi98] is an extension of the semantic approach described in [Wi97],
that both [DH03] and [Pr00] are not semantic approaches, and that [DH03] is
not a generalization of [Pr00] (which is interesting since both approaches deal
with nestings, and [DH03] was published three years after [Pr00]). Hence, the
references on the right side of the stroke are negative references with respect to
both the corresponding concepts and relations. The last graph of Figure 4 is a
concept graph with cuts ( assembled of three contiguous subgraphs) representing
the same information as the third graph. As already mentioned, these graphs
include a negation on the level of propositions. Informally speaking, a part of
the graph is negated if it is nested in a so-called cut, which is represented in
the Figure by a bold oval. The subgraphs not containing cuts are read in the
same way as concept graphs. However, each cut negates everything within it,
so the two bottommost parts of the graph are read: [DH03] and [Pr00] are ‘>’,
[DH03] is not an extension of [Pr00], and neither [DH03] nor [Pr00] are semantic
approaches. Concept Graphs with nestings are omitted in this example, since a
triadic (or nested) PCF would be required to provide a reasonable explanation.

For an overview of the theories of Prediger, Dau and Klinger with a more
formal focus we refer to [KV03].



7 Outlook

The restructuring process of logic is still in its early stages. Some syntactical
approaches still lack adequate calculi. Much effort has to be spent on further
extensions of concept graphs in order to model further aspects of reasoning and
communication. This will include various forms of background knowledge, like
material implications as they are described in the book of Brandom ([Br01]).
Furthermore, modal and contextual reasoning or different kinds of quantification
have to be incorporated.

On the other hand, a restructured logic has to prove itself in practice. Thus, it
is desirable to implement concept graphs, for example as computer programs, and
to test out their usability in real life projects. Only projects can show whether
our formalizations of logic are adequate for our purpose.

It will certainly be a long way to carry out all these steps. But as our ex-
perience with FCA shows, we can be quite optimistic that these goals can be
reached in the long run.
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ismus. Suhrkamp 2001.

[Da01] F. Dau: Concept Graphs and Predicate Logic. In: H. S. Delugach, G. Stumme
(Eds.): Conceptual Structures: Broadening the Base, Springer Verlag, Berlin–New
York 2001, 72–86.

[Da02] F. Dau: The Logic System of Concept Graphs with Negations (and its Rela-
tionship to Predicate Logic), Dissertation. FB Mathematik, TU Darmstadt 2002.
For the submitted version see http://www.mathematik.tu-darmstadt.de/∼dau

[Da03] F. Dau: Concept Graphs without Negations: Standardmodels and Standard-
graphs. FB4-Preprint, TU Darmstadt 2003.

[DH03] F. Dau, J. Hereth Correia: Nested Concept Graphs: Mathematical Foundations
and Applications in Databases. FB4-Preprint, TU Darmstadt 2003.

[GW99a] B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin–New York 1999.

[GW99b] B. Ganter, R. Wille: Contextual Attribute Logic. In: W. Tepfenhart, W.
Cyre (Eds.): Conceptual Structures: Standards and Practices, Springer, Berlin
Heidelberg New York 1999, 401–414.

[Ha81] J. Habermas: Theorie kommunikativen Handelns. 2 Bände. Suhrkamp, Frank-
furt 1981.



[He74] H. von Hentig: Magier oder Magister? Über die Einheit der Wissenschaft im
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